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SUMMARY 

An investigation of the lift-to-drag ratio attainable by a slender, affine wing 

at h.ypersonic speeds is presented under the assumptions that the pressure distri- 

bution is Newtonian and the skin-friction coefficient is constant. Analytical 

expressions are derived relating the drag, the lift, and the lift-to-drag ratio to 

the geometry of the configuration. 

The class  of flat-top wings whose upper surface is parallel to  the free  

s t r eam is considered. After it is assumed that the chordwise thickness 
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distribution is a power law and the spanwise thickness distribution is proportional 

t o  some power of the chord distribution, the effect of the thickness ratio and the 

power law exponents on the lift-to-drag rat io  is investigated. 

It is shown that a se t  of values of the thickness ratio and the power law ex- 

ponents exists which yields a maximum lift-to-drag ratio.  Specifically, the opti- 

mum thickness ratio is such that the friction drag is one-third of the total drag; 

the optimum chordwise power law exponent is one, meaning that a l inear thickness 

distribution is the best in  the chordwise sense; and the optimum spanwise power 

law exponent is one, meaning that a thickness distribution proportional to  the chord 

-3  
, distribution is the best in the spanwise sense. For a friction coefficient Cf = 10 

the maximum attainable lift-to-drag ratio is 5.29.  
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1. INTRODUCTION 

In a previous report (Ref. l), the basic theory of slender, lifting bodies in the 

hypersonic regime was formulated, and the lift-to-drag ratios attainable by these 

bodies were determined. The class of flat-top bodies whose longitudinal contours 

are power laws and whose transversal contours a r e  semielliptical o r  triangular 

was considered, and the effects of the thickness ratio, the power law exponent, 

and the elongation ratio of the cross section on the lift-to-drag ratio were investi- 

gated. 

It was shown that, if the c ross  section is triangular, a wing-like configuration 

rather than a body-like configuration is aerodynamically desirable at hypersonic 

speeds. Because of this result and owing to  the fact that the analytical treatment of 

wing- like configurations requires assumptions different from those employed for body- 

like configurations, the analysis of Ref. 1 is extended here to slender, lifting wings. 

It is the object of this report to formulate the basic theory of slender, lifting 

wings and determine the maximum attainable lift-to-drag ratios under the assumption 
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that no constraints are  imposed on the configuration. In a practical design, 

requirements may be imposed on quantities such as the volume, the planform 

area, the frontal area,  and the position of tile center of pressure.  Therefore, 

the lift-to-drag ratios calculated here must be regarded as the upper limits t o  

those which can be achieved whenever any combination of constraints is imposed 

on the wing. 

The hypotheses employed are as follows: (a) a plane of symmetry exists 

between the left-hand and right-hand parts of the wing; (b) no plane of symmetry 

exists between the upper and lower parts; however, the intersection of these par ts  

is a curve contained in a plane perpendicular to the plane of symmetry, called 

the reference plane; (c) t h e  wing is slender in both the chordwise and spanwise 

senses, that is, the squares of both the chordwise and spanwise slopes are small  

with respect to one; (d) the  wing is affine, in the sense that each chordwise section 

can be generated from the root section by a linear transformation not involving 

rotation; (e) the free-stream velocity is parallel to the line of intersection of the 



I 

plane of symmetry and the reference plane; (f) the pressure coefficient is twice 

the cosine squared of the angle formed by the free-stream velocity and the normal 

to  each surface element; (g) the skin-friction coefficient is constant; and (h) the 

contribution of the tangential forces to the lif t  is negligible with respect to the 

contribution of the normal forces. 
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2 .  DRAG AND LIFT 

In order to relate the drag and the lift of a wing to its geometry, we consider 

a Cartesian coordinate system Oxyz defined as follows (Fig. 1): the origin 0 is 

the apex of the wing; the x-axis is the intersection of the plane of symmetry and 

the reference plane, positive toward the trailing edge; the z-axis is contained in 

the plane of symmetry, perpendicular to the x-axis, and positive downward; and 

the y-axis is such that the  xyz-system is right-handed. 

4 4 4  

W e  now denote by I+, uy , uz the unit vectors of the Cartesian coordinate 

system, by the unit vector normal to the infinitesimal element of wetted area 

+ 
dSw , positive outward, and by t the unit vector which is tangent t o  dSw and is in 

the direction of the local flow after impact. Since the free-s t ream velocity is 

parallel to the x-axis, the drag D and the lift L are given by 
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where q is the free-stream dynamic pressure, C the pressure coefficient, 
P 

and Cf the skin-friction coefficient. 

If every surface element ''sees I' the flow, the distribution of pressure 

coefficients is given by (Ref. 2, Chapter 22) 

n 

Next, the geometric relationship 

is introduced, where the upper sign is valid for the upper surface and the lower sign, 

for the lower surface.  With this understanding, the aerodynamic forces can be 

rewritten in the form 

where SI and S2 denote the projections of the upper and lower surfaces on the 
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reference plane z = 0, each of which is equal to the planform area S. After the 

normal and tangent vectors are expressed by 

-+ ~ r Y 5 0 over S1 
n = ai& + B i i y +  yu,  Y 2 0  over S2 

i, 

a = f , /g ,  9 = f Y / &  Y = f,/g 

-+ -+ -+ 4 

t = au, + b u  + c u ,  , a 2 0  Y 

Eqs.  (4) become 

If the geometry of the wing is described by the equation 

the normal unit vector and the gradient of the function f are parallel with the impli- 

ca t  ion that 
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1 where 

9 

g = .!f,” t f; + fi 2 

Since the tangent vector is of unit modulus, perpendicular to z, and coplanar with 

-i --t 

n and ux , the equations determining the components a ,  b, c are written as 

4 4  - + +  
t a t  = 1 ,  t - n  = 0 ,  

-+ * - - t  

t x n . u x  = 0 

and, in explicit form, become 

a2 + b2 + c2 = 1 

a a + 8 b + y c  = 0 

y b -  @ C  = 0 

These equations are solved by 

a = ,II-, c = - a y / . / l -  a 2 

with the implication that 
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a = h/g7 b = - f x f y / g h ,  c = - fx fz /gh  

where 

h = , If  ' 2  + f, 2 
' Y  

AAR- 13 

The next step consists of combining Eqs . (6), (8), and (13) to obtain the relation- 

ships 

If the geometry of the wing is expressed in the form 

f(x,  y, z) 3 -+z lt z ( x ,  y) = 0 

the following relations hips hold : 

f, = f zx ,  fy = * z y ,  f, = r l  

and imply that 
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2 h = , / 1 + z 2  
Y ’  Y g = 4- 2x2 -J- z 

Consequently, Eqs . (15) can be rewritten as 

and simplify to  

if  the contribution of the tangential forces to the lift is negligible with respect to  the 

contribution of the normal forces, that is ,  if 

r C f  g2/2zxh << 1 

almost everywhere. 
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2 . l .  Slender Wing. Now, we consider the contours obtained by intersecting 

the surface (16) with either a plane y = Const or  a plane x = Const, and observe 

that the slopes of these contours are given by 5 and zy , respectively. If the 

wing is slender i n  both the chordwise and spanwise senses,  the squares of these 

slopes are small with respect to one, that i s ,  

almost everywhere, so that 

g = h = l  

With  this understanding, Eqs . (20) simplify to 
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2 . 2 .  Flat-Topwing;. If the upper and lower parts of the wing are symmetric 

with respect to the reference plane, the integral (24-2) implies that the lift is zero.  

However, lift can be produced if the upper and lower parts are not symmetric. 

Since the contribution of the upper par t  to the lift is negative and the contribution 

of the lower par t  is positive, the l i f t  can be increased by making the volume 

above the reference plane as small as possible and, preferably, zero.  If this is 

done, the pressure drag is decreased. Therefore, a flat-top wing (Fig. 2) is 

naturally suited to produce high lift-to-drag ratios in the hypersonic regime. 

Mathematically speaking, this wing has the property that 

z = o  

for  the upper surface and, as a consequence, Eqs. (24) become 

where S denotes the planform area  and z(x,y) is the function describing the lower 



14 AAR- 13 

surface. Now, let the geometry of the planform and the thickness distribution on 

the periphery of the pianform be expressed as 

Leading edge x = m(y) , z = o  

Trailing edge x = n(y) , = t(Y) 

-- 

In the light of the symmetry property, the aerodynamic forces become 

b/2 n(Y> r b/2 
z:dydx I- 4Cf J c (Y) dY 

m (Y) 0 D/q = 4 s 0  J 

L’q = 4 s 0  J m(Y) 2x2 dydx 
b/2 r d Y )  

where b denotes the wing span and 

C ( Y >  = n(Y) - m(Y) 

the chord distribution. 

2 . 3 .  Affine Wing. Next, we focus our attention on the c lass  of wings such that 

any chordwise contour can be generated from the root contour by means of a linear 
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transformation not involving rotation. The geometry of the lower surface of these 

affine wings is given by 

z = t(O)A(5)B(r) 

where 5 denotes a nondimensional chordwise coordinate, T a nondimensional span- 

wise coordinate, A ( 5 )  a function describing the chordwise thickness distribution, 

and B (q) = t (b7/2) /t (0) a function describing the spanwise thickness distribution. 

Specifically, the coordinates 5 and rl are defined as 

and, hence, vary between the limits 0 and 1. Furthermore, the functions A ( 4 )  and 

B(r) are chosen in such a way that 

A(0)  = 0 , 

W e  now observe that 

A(1) = 1 : B(0)  = 1 

( 3 3 )  
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where 7 = t(O)/c(O) denotes the thickness ratio of the root airfoil, A denotes the 

derivative dA/d?, and where C(q) = c(bq/2)/c(O) is a function describing the span- 

wise chord distribution such that 

C(0) = 1 

With this understanding, the drag and the lift can be rewritten as 

where I1 , 12 ,  I3 denote the following integrals depending on the chordwise contour: 

1 
I l  = Io A3 d? 

I 2  = 1 

= Io 1 A2 d< 
I3  

and J1 , J2 , J3 denote the following integrals depending on the spanwise contour 

and the chord distriblition: 
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J, = 2 5 ‘  C d q  
0 

53 = 2 1’ (B2/C) dq 
“0 

AAR- 13 
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3 .  LIFT-TO-DRAG RATIO -_ 

From the previous discussion, it appears that - -  if  the root chord c(O), the 

span b, the thickness ratio 7 ,  the chordwise contour A(<), the spanwise contour 

B(~-I), and the chord distribution C(q) are given - -  the drag and the lift can be 

evaluated from Eqs. (35) througb (37). Once those quantities are known, one can 

determine the aerodynamic efficiency o r  lift-to-drag ratio 

E = L/D 

which, in  the light of Eqs. (35), can be written as 

3 . 1 .  Cptimum Thickness Ratio. We now assume that the chordwise contour 

A(<), the spanwise contour B(Q, and the chord distribution C(q) are arbitrari ly 

prescribed, which means that the quantities I1 , 1 2 ,  I3 and J1 , J2 , J3 are known 

a priori .  Then, we study the effect of the thickness ra t io  on the lift-to-drag rat io  (39). 

I 
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I Clearly, the lift-to-drag ratio is a maximum when the thickness ratio satisfies 

the relationship I 

which means that the friction drag is one-third of the total drag. The associated 

lift-to-drag ratio is given by 

E =  

3.2. Optimum Chordwise Contour. Next, we consider wings optimized with 

respect to the thiclcness ratio and assume that the spanwise contour B(T) and the 

chord distribution C(7) are arbitrarily prescribed, which means that the quantities 

J1 T T  J 2  are knnwn a pr ior i .  Then, we consider a one-parameter family of 

chordwise contours having the form 

and study the effect of the parameter n on the lift-to-drag ratio (41). Since this 
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quantity depends on n through the functions I1 12 ,  I3  a maximum occurs 

when the following relationship is satisfied: 
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I 

with the dot sign denoting a derivative with respect to n. For the power law contours 

A = C n  (44) 

the functions I1 , I,, I3  take the values 

I1 = n3/(3n - 2) 

I2 = 1 

= n2/(2n - 1) I 3  

which hold for n > 2/3 only (the pressure drag cannot be negative). Since their 

derivatives are gven  by 

il  = 6n2 (n - 1)/(3n - 2)2 

i, = 0 

i3  = 2n(n - 1)/(2n - 1)2 

(45) 



21 

I 
the relationship (43) is solved by 

n = l  

which means that the optimum chordwise contour is a straight line. With this 

understanding, the thickness ratio (40) and the lift-to-drag ratio (41) become 

3 . 3 .  Optimum Spanwise Contour. Finally, we consider configurations which 

are optimized with respect to the thickness ratio and the chordwise contour A(<). 

We assume that the chord distribution C(T) is arbitrari ly given, consider a one- 

parameter family of spanwise contours having the form 

and study the effect of the parameter m on the lift-to-drag ratio (48-2). Since ths  

quantity depends on m through the functions J , J, , and J3 , a maximum occurs 

when the following relationship is satisfied: 
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with the dot sign denoting a derivative with respect to the parameter m .  If the 

spanwise thickness distribution is proportional to  the m-th power of the chord 

distribution, that is, if 

B = Cm(q) 

AAR- 13 

the functions J, , J, , J3 take the values 

n l  
J1 = 2j0  C3m-2 dri 

r1 J, = 2 j  Cdri 
0 

Since their derivatives are given by 

1 
= 6 s  C3m-2 log Cdq 

Jl 0 

J2 = 0 

1 

0 
j3 = 4s C2m-1 log Cdq 
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I Eq . (50) is solved by 
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m = l  

AAR- 13 

for every chord distribution C(Q. Therefore, the optimum wing is such that the 

spanwise thickness distribution and the chord distribution are proportional 

to one another. Regardless of the chord distribution, the optimum thickness ratio 

(48-1) and the associated lift-to-drag ratio (48-2) become 
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4. DISCUSSION AND CONCLUSIONS 

In the previous sections, an analytical derivation of the drag, the lift, and the 

lift-to-drag ratio of slender, affine wings flying at hypersonic speeds is presented 

under the assumptions that the pressure distribution is Newtonian and the skin- 

friction coefficient is constant. Particular attention is devoted to the class of 

flat-top wings whose upper surface is parallel to the free  s t ream. 

It is shown that a value of the thickness ratio exists which maximizes the 

lift-to-drag ratio; this particular value is such that the friction drag is one-third 

of the total drag. The subsequent optimization of the chordwise contour indicates 

that a linear thickness distribution is the best in the class of power law contours. 

Finally, the effect of the spanwise thickness distribution on the lift-to-drag ratio 

is investigated under the assumption that the chord distribution is arbitrari ly given; 

it is shown that a spanwise thickness distribution proportional to the chord distri- 

bution is the best in the class of power-law relationships between these distributions. 
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The relevant results are summarized in Tabie 1 in which the assumption Cf = 

is employed. In closing, the following comments are pertinent : 

(a) The main drawback of the slender wings considered here  is the severe 

heat transfer occurring at the lines of intersection between the surfaces composing 

the vehicle. Consequently, the present sharp-edge configurations must be replaced 

by faired configurations in which the transition from one surface to  another occurs 

with a finite curvature. If this is done, lift-to-drag ratios smaller than those 

predicted here are to be expected. 

(b) To design a practical hypersonic vehicle, the present idealized configurations 

are to be modified by additional elements, such as control surfaces.  Hence, a 

further reduction in the lift-to-drag ratio is to be expected. 

(c) The cumulative detrimental effect of the considerations (a) and (b) can be 

offset to  some degree by inclining the upper surface at a negative angle with respect 

to the flow, that is, by taking advantage of the added lift produced by the flow 

expansion. If this is done, it is probable that a lift-to-drag ratio in the neighborhood 
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of 4 to 5 can be achieved in practice. This value is sufficiently high to  encourage 
I 

further studies of hypersonic cruise vehicles, suborbital vehicles, and vehicles 

for maneuverable reentry from outer space. 
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TABLE 1 

OPTIMUM FLAT-TOP WINGS 
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LIST OF CAPTIONS 

Fig. 1. Coordinate system. 

Fig. 2 .  Flat-top wing. 
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